Combined Adaptive-robust and Neural Network Control of Two RLED Cooperating robots using backstepping Design
نویسندگان
چکیده
In this paper, a combined adaptive-robust and neural network control based on backstepping design is proposed for trajectory tracking of two 6-DOF rigid link electrically driven (RLED) elbow robot manipulators moving a rigid object when actuator dynamics is also considered in the system dynamics. First, the authors derive kinematics and dynamics of the mechanical subsystem and the relations among forces/moments acting on the object by the robots, using different Jacobians. Second, the current vector (instead of the torque vector) is regarded as the control input for the mechanical subsystem and, using an adaptive-robust algorithm, an embedded control variable for the desired current vector is designed so that the tracking goal may be achieved. Third, using a neural network controller for DC motor dynamics, the voltage commands are designed such that the joint currents track their desired values. The proposed control algorithm does not require exact knowledge of the mathematical model representing each robot and its actuator dynamics and does not need acceleration measurement. The adaptive-robust control parameters and neural weights are adapted online, and the related Lyapunov function is established and verified. The proposed combined controller guarantees asymptotic tracking of the object desired trajectory. Simulation results show the efficiency and usefulness of the proposed scheme.
منابع مشابه
An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملRobust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملCoordinated Control of a Tractor-Trailer and a Combine Harvester by Neural Adaptive Robust Control
In this paper, the coordinated control problem of a tractor-trailer and a combine harvester is taken into account in the presence of model uncertainties by using the leader-following approach to track a reference trajectory for the first time. At first, a second-order leader-follower dynamic model is developed in Euler-Lagrange form which preserves all structural properties of the dynamic model...
متن کاملRobust adaptive control of voltage saturated flexible joint robots with experimental evaluations
This paper is concerned with the problem of design and implementation a robust adaptive control strategy for flexible joint electrically driven robots (FJEDR), while considering to the constraints on the actuator voltage input. The control design procedure is based on function approximation technique, to avoid saturation besides being robust against both structured and unstructured uncertaintie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics and Automation
دوره 23 شماره
صفحات -
تاریخ انتشار 2008